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Abstract 

This study first reexamines the findings of Perron (1989) regarding the claim that most 
macroeconomic time series are best construed as stationary fluctuations around 8 detcr- 
ministic trend function if allowance is made for the possibility of a shift in the intercept of 
the trend function in 1929 (a crash) and a shift in slope in 1973 (a slowdown in growth). 
Unlike that previous study, the date of possible change is not fixed a priori but is 
considered as unknown. We consider various methods to select the break points and the 
asymptotic and finite sample distributions of the corresponding statistics. A detailed 
discussion about the choice of the truncation lag parameter in the autoregression and of 
its effect on the critical values is also included. Most of the rejections reported in Person 
(1989) are confirmed using this approach. Secondly, this paper investigates an inter- 
national data set of post-war quarterly real GNP (or GDP) series for the G-7 countries. 
Our results are compared and contrasted to those of Banerjee et al. (1992) and Zivot 
and Andrews (1992). In contrast to the theoretical results contained in these papers, we 
derive the limiting distribution of the sequential test without trimming. @ 1997 EIszvier 
Science S.A. 
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In a previous paper, Perron (1989), we argued that many macroeconomic time 
series could be represented as stationary fluctuations around a deterministic 
trend function if allowance is made for a possible change in its intercept in 1929 
(a crash) and in its slope in 1973 (a slowdown in growth). The test statistics were 
constructed by adding dummy variables for different intercepts and slopes, 
extending the standard Dickey-Fuller procedure. The asymptotic distribution 
theory underlying the critical values obtained under the different models as- 
sumed that the dating of the break points was known a priori, or more precisely, 
that the dates chosen were uncorrelated with the data. 

This postulate has been criticized, most notably by Christian0 (1992) who 
argued that the choice of these dates had to be viewed, to a large extent, as being 
correlated with the data. This is an important problem because both the finite 
sample and asymptotic distributions of the statistics depend upon the extent of 
the correlation between the choice of the break points and the data. There is 
a sense, as argued before, in which the choice of these dates can be regarded as 
independent of the data. First, the dates used in the previous study were chosen 
ex-ante and not modified ex-post. Secondly, these dates are related to exogenous 
events for which economic theory would suggest the effects that actually hap- 
pened; e.g., the stock market crash of 1929 with the ensuing dismantle of the 
economic organization and the exogenous sudden change in oil prices with the 
resulting alteration of international economic coordination and policies. 

In the sense described above the choice of the dates can be viewed as 
uncorrelated with the data. There is, however, a validity to the argument that it 
is only ex-post (after looking at the data) that we can say that the changes that 
followed these exogenous events actually occurred as predicted by the theory. 
Furthermore, many other exogenous events did not have the major impact that 
some theories would have predicted. In this sense, the choice of the break points 
must be viewed as being correlated, at least to some extent, with the data. To 
what extent is a difficult and practically impossible question to answer. At the 
very lcast the choices were not perfectly correlated with the data as no attempts 
were systematically made to maximize the chances that the unit root be rejected 
nor to find where, according to some test criteria, were the most likely dates of 
change, 

While we still believe that the assumption about the exogeneity of the choice 
of the break points is a good first approximation to the true extent of the 
correlation with the data, it is useful to investigate how robust the results are to 
different postulates. The aim of this paper is to take the extreme view where the 
choice of the break points is effectively made to be perfectly correlated with the 
data. This case is instructive to study because if one can still reject the unit-root 
hypothesis under such a scenario it must be the case that it would be rejected 
under a less stringent assumption. 
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We proceed as follows for the practical implementatio;l. Again, as in the 
previous analysis, only one possible break point is allowed for any single series. 
This break point is first chosen such that the t-statistic for testing the null 
hypothesis of a unit root is smallest among all possible break points. We also 
consider choosing the break point that corresponds to a minimal t-statistic on 
the parameter of the change in the trend function. This allows the mild a priori 
imposition of a one-sided change which permits substantial gains in power. We 
also investigate various issues regarding the choice of the autoregressive trunc- 
ation lag and its effect on the finite sample critical values. 

Our paper is closely related to and complements those of Banerjee et al. (1992) 
and Zivot and Andrews (1992) in that similar procedures and series are ana- 
lyzed. We extend their analysis in several directions. On a methodological level, 
we consider the asymptotic distribution of the seqtential test based on the 
minimal value of the unit-root tests over possible break points. We show the 
results of Zivot and Andrews (1992) to be valid without any trimming at the 
end points. The proof, which is of interest in itself, is based on projection 
arguments and introduces a method that can be applied to a variety of frame- 
works. Concerning the empirical results, our analysis is more extensive an 
shows that alternative procedures can lead to conclusions that are less favorable 
to the unit root than suggested in these two studies. We pay particular attention 
to the importance of the selection of the truncation lag on the outcome of the 
tests. 

The paper is organized as follows. Section 2 reviews the statistics invo 
Section 3 discusses their asymptotic distribution under the null hypothesis 
a unit root and Section 4 their finite sample distribution using simulati 
methods. Section 5 contains simulation experiments providing information 
about their size and power under various data-generating processes. Section 6 
presents the empirical results for the Nelson-Plosser (1982) data set and 
Section 7 analyzes an international data set of post-war quarterly real GNP 
series. Section 8 offers concluding comments and a mathematical appendix 
contains the derivation of the limiting distributions. 

In this section, we briefly review the statistical procedures used to test for 
a unit root allowing for the presence of a change in the trend function occurring 
at most once. The reader is referred to Perron (I989) for details on the models. 
Throughout, 7’b denotes the time at which the change in the trend function 
occurs. The first model allows only a change in the intercept under both the null 
and alternative hypotneses. Furthermore, this change is assumed to uccur 
gradually and in a way that depends on the correlation structure of the noise 
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function. This was termed the ‘innovational outlier model’, and the unit-root test 
is performed using the t-statistic for testing Q = 1 in the following regression: 

k 

Yt = CL + eDut + Bt + aD(Tb)t + orY,-1 + C Cidyg_j + et, 
i= 1 

(1) 

where DU, = 1 (t > Tb) and D(T& = 1 (t = Tb + I) with I( .) the indicator 
function. Regression (l), like the others that follow, is estimated by QLS and is in 
the spirit of the Dickey-Fuller (1979) and Said-Dickey (1984) methodology 
whereby autoregressive moving average processes are approximated by 
autoregressive processes. Under the second model, both a change in the inter- 
cept and the slope are allowed at time T b. The test is performed using tbt= 
t-statistic for the null hypothesis that a = 1 in the regression: 

k 

yt = p + ODut + /?t + yDTt -E- SD&), + a~,--~ + c cidJ& -I- et, (2) 
i=l 

with DT, = l(t > &,)t. Under the third model, a change in the slope is allowed 
but both segments of the trend function are joined at the time of break. Mere the 
change is presumed to occur rapidly and corresponds to the ‘additive outlier 
model’ in the terminology of Perron (1989). We use the following two-step 
procedure. First, the series is detrended using the following regression where 
DTf$ = l(t > Tb)(t - Tb): 

yt = p + #h + y DT: + jjt . w 

The test is then performed using the t-statistic for 01 = 1 in the regression: 
k 

Yt = oiJt-1 + c Cjdj$-i + e,. 
i=l . 

w 
We denote by ts(i, Tb, fk) (i = 1, 2, 31, the t-statistic for testing 01 = 1 under 

model i with a break date & and truncation lag parameter k (using regressions 
(1), (2) and (3b) for i = 1,2, and 3, respectively). In these regressions, Tb and k are 
treated as unknown. We next describe various data-dependent methods to select 
these values endogeneously. 

2.1. Methods ‘to choose the break date Tb 

We consider two methods to select Tb endogenously. First Tb is selected as 
the value which minimizes the t-statistic for testing 01= 1. We define the 
statistics as t:(i) = MinTbEfk + I, T) t&i, Tb, k) (i = 1, 2, 3). The asymptotic distri- 
bution of t,*(l) and t,*(2) was studied by Zivot and Andrews (1992) under the 
condition that the range of possible values for the break point be restricted to 
some subset that excludes values at each end of the sample. In the next section, 
we show their result to remain valid even without trimming. 



Secondly, Tb is chosen to minimize either t6, the t-statistic on t 
associated with the change in the intercept (Model 1) or tp, the t-statistic on t 
change in slope (Models 2 and 3). We denote the t-statistic on a (tar a nu 
hypothesis that a = 1) obtained from such a procedure by &(I) for 
and by tz,Ji) (i = 2,3) for Models 2 and 3. More precisely, tc*,e(l) = tz( 
where Tt is such that to( Tt) = Min TbE(k + l, T1 t&& k), where again deferent 
specifications about the choice of k will be analyzed. The statistics t&(i) (i = 2,3) 
are defined in an analogous fashion. This procedure allows the possibility of 
imposing the mild a priori restriction of a one-sided change, i.e. allowing the 
date of the change to be unknown but restricting the analysis to the cases 
a ‘crash’ or a slowdown in growth. We also discuss the case where the bre 
point is selected using the same procedure without any a priori assumption on 
the sign of the change. In this context the break date is selected using the 
maximum of the absolute value of ta or tf. The corresponding statistics are 
denoted by t&#) for Model 1 and t$Ji) (i = 2, 3) for Models 2 and 3. 

There is now evidence that using data-dependent methods to select the 
truncation lag parameter k leads to test statistics having better properties (stable 
size and higher power) than if a fixed k is chosen a priori (unless, of course, one 
happens to select that value of k which is best), see Ng and Perron (X995), Perron 
and Vogelsang (1992) and Hall (1994). We consider two such data-dependent 
methods. The first is a general to specific recursive procedure based on the 
t-statistic on the coefficient associated with the last lag in the estimated autoreg- 
ression. More specifically, the procedure selects that value of k, say k*, such that 
the coefficient on the last lag in an autoregression of order k* is significant and 
that the last coefficient in an autoregression of order greater than k* is insignific- 
ant, up to a maximum order k max. In the simulations and empirical applica- 
tions below, we use a two-sided 10% test based on the asymptotic normal 
distribution to assess the significance of the last lags. This procedure is denoted 
below as ‘t-sig’. 

Said and Dickey (1984) use yet a different method in their empirical applica- 
tion. It is based on testing whether additional Bags are jointly significant using an 
‘F-test’ on the estimated coefficients. First a maximum value of k, k max, is 
specified and the autoregressions with k max and (k max - 1) lags are estimated. 
A 10% one-tailed F-test is used to assess whether the coefficient on the k maxth 
lag is significant and if so, the value of k chosen is this maximum value. If not, the 
model is estimated with (k max - 2) lags. The lag(k max - 1) is deemed signifi- 
cant if either the F-test for (k max - 2) versus (k max - 1) lags or the F-test for 
(k max - 2) versus k max lags are significant based on the 10% critical values of 
the chi-square distribution. This is repeated by lowering k until a rejection that 
additional lags are insignificant occurs or some lower bound is attained. In the 
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empirical applications, the lower bound is set to k = I. This procedure is 
denoted below as ‘F-sig’. 

We choose these ‘general to specific’ procedures rather than methods based 
on information criteria, such as AK, because the latter tend to select very 
parsimonious models leading to tests with sometimes serious size distortions 
and/or power losses with data in the class of ARMA processes. Indeed, Ng and 
Perron (1995) show that using an information criterion leads to a selected value 
of k that increases to infinity, as T increases, only at the very slow rate log(T). 
This is consistent with many empirical results showing that using the AK leads 
to very small values of k being selected (typically 0 or 1) and that often times the 
estimated residwals exhibit serial correlation (see Perron, 1994). 

3. The asymptotic distribntion of the statistics 

In this section, we consider the limiting distribution of the statistics. To 
simplify the derivations we suppose the data-generating process to be a random 
walk, 

Y, =Y,-I + et, V = L2, . . . Jl, (4 

where the errors e, are martingale differences (yO is some fixed value), and 
consider the statistics constructed with k = 0. Using arguments in Ng and 
Perron (1995), we can then state that the resulting limiting distribution remains 
the same when additional correlation is present and the statistics are construc- 
ted with one of the data-dependent methods to select k. This holds provided 
k max3/T 3 0 as T + co. This is the same strategy as used by Zivot and Andrews 
(1992) and Banerjee et al. (1992). All statistics are asymptotically invariant to 
a change in intercept. Vogelsang and Perron (1994) show that they are not 
asymptotically invariant to a change in slope but that the asymptotic distribu- 
tion corresponding to a zero change in slope is a better approximation to the 
finite sample distribution for vaiucs typically encountered in practice. The 
following Theorem concerning the asymptotic distribution of t:(i) (i = 1,2,3) is 
proved in the appendix. 

TkeorePn 1. Let ( yt 1: be generated by (4) and denote by ’ =s ’ weak convergence in 
distribution from the space D[O, 11 to the space C[O, l] using the un~orna metric 
on the .rpace of functions on [0, 1-j. Then: 

(a) for i = 1, 2: * 
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(b) for Model 3: 

inf7-b, [I, T-J f&(i, Tb, k =O)=$infIe~O,~j j~d~Jh.W~~ 
[ 0 

-&r - l)Wo(r)dr; &(~,;1)~d~ 
A 0 

where a = (d3(1 - ay/3)- I, We(r) md Wi(r, A) are residuals fium a projection 
of cl standard Wiener process W(r) onto t/w suBspace generated by the fapac- 
tions (l,r) (i = 0), { 1, r, dz& a)} (i = l), (1, r, dtr(r, a), dt*[r, a)} (i = 2) zmcl 
{ 1, r, dt*(r, A)> (i = 31, with d2+, a) = lfr > a) and dt*@, a) = n(r > ajfr - ii). 

Theorem 1 differs from the results in Zivot and Andrews (1992) in two 
respects. First there is no need to have the hybrid metric considered in that 
paper. The weak convergence results hold under the uniform metric. This is 
achieved using arguments in Gregory and Hansen (1996) so that there is no 
for a weak convergence result for the sample moments of DIP, or DTF. 
most important and novel aspect in which our result differs is that we do not 
require that the possible range of values for the break point be restricted to 
exclude the end points. To achieve this, our proof is rather diRerent and 
somewhat more involved and is based on projection arguments. The intuition is 
quite simple. With a break at either end points, the regressions indeed exhibit 
perfect multicollinearity but the coefficient on the lagged-dependent variable, ar, 
is a linear combination of the parameter vector that is identifiable and estimable 
and its t-statistic is also well defined. In such cases, the regressions become 
equivalent to ones without dummy and the standard limiting distribution of 
Dickey and Fuller (1979) applies. This last result is important because it makes it 
unnecessary to use an arbitrary trimming near the end points, such as the 15% 
exclusion on both sides suggested by Banerjee et al. (1992). The arguments in the 
proof of Theorem 1 can also be applied to other context such as the coin 
tion tests with regime shifts considered by Gregory and Hansen (1996). 

We used simulations to obtain the percentage points of the asymptotic 
distributions described above. These were based on HI,000 replications using 
partial sums of i.i.d. N(0, 1) random variables to approximate the Wiener 
process and 1000 steps to compute the integrals. The critical values are present- 
ed in the rows labelled ‘T = 00’ in Table 1. 

This relaxation of the need for trimming at the end points does not appear to 
be possible for the tests whereby the break point is chosen with respect to the 
t-statistic on the coefficient of the intercept or slope change. The asymptotic 
distributions of t&(l) and t,*IeI(l) assuming the break point to be in some 
compac! 5 u&et was derived in Banerjee et al. (1992). Similar asymptotic results 
are in Vog&ang and Perron (1994) for t&(i) and t,*,,,(i) (i = 2, 3). The critical 
values are reproduced in Table 1. 



Table 1 
Finite sample and asympaotic distributions 

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99,0% 

(a) Model 1, t?(l), Chuosing Tb minimizing td 

T = 60 k(F-sig) -5.83 -5.49 -5.21 -4.91 
k(t-sig) -5.92 -5.58 -5.23 -4.92 

T = 80 k(F-sig) -5.77 -5.35 -5.15 -4.84 
kft-sig) -5.77 -5.31 -5.09 -4.84 

T = 100 k(F-sig) -5.70 -5.35 -5.09 -4.82 
k(t-sig) -5.70 -5.36 -5.10 -4.82 

T=00 -5.41 - 5.02 -4.80 -4.58 

-3.91 - 3.00 
-3.91 -3.00 
-3.87 - 2.96 
-3.88 - 2.95 
- 3.89 -3.00 
-3.87 - 3.05 
- 3.75 -2.99 

- 2.70 -2.41 - 1.96 
-2.74 -2.55 -2.25 
- 2.70 -2.41 --2.12 
- 2.73 -2.55 -2.22 
- 2.74 - 2.46 -2.22 
-2.75 -2.46 -2.22 
- 2.77 -2.56 - 2.32 

(b) Model 1, t&(l), Choosing Tb minimizing to 

T = 60 k(F-sig) -5.58 -5.15 -4.88 -4.47 
k(t-sig) -5.70 -5.21 -4.92 -4.53 

T = 80 k(F-sig) -5.50 -5.11 -4.85 -4.53 
k(t-sig) -5.59 -5.09 -4.83 -4.54 

T = 1100 k(F-sig) -5.42 -5.03 -4.80 -4.47 

T=O0 k(t-sig) 
-5.43 -5.05 -4.83 -4.50 
-5.15 -4.87 -4.64 -4.37 

-3.33 
- 3.32 
- 3.33 
- 3.33 
- 3.33 
- 3.34 
- 3.39 

- 1.60 
- 1.79 
- 1.86 
- 1.92 
- 1.92 
- 2.02 
- 2.27 

-0.84 - 0.05 0.56 
- 1.14 -0.35 0.42 
- 1.06 -0.32 0.67 
- 1.19 - 0.46 0.34 
- 1.33 -0.77 0*02 
- 1.38 -0.84 -0.05 
- 1.85 -1.38 -0.70 

(c) Madel 1, t$,Iet(l), Choosing Tb maximizing Itfit 

T = 60 k(F-sig) -5.77 -5.42 -5.13 -4.80 
k(t-sig) -5.85 -5.51 -5.18 -4.83 

T = 80 k(F-sig) - 5.75 - 5.26 - 5.06 -4.77 
k(t-sig) -5.66 -5.29 -5.04 -4.78 

T = 100 k(F-sig) -5.69 -5.34 -5.03 -4.75 
k(t-sig) -5.68 -5.36 - 5.05 -4.77 

T=co -5.34 -5.08 -4.84 -4.59 

- 3.70 
-370 
-3.71 
-3.72 
- 3.74 
-3.71 
- 3.74 

- 1.87 
-2.14 
-2.14 
- 2.28 
- 2.33 
-2.40 
-2.71 

- 1.19 -0.39 0.24 
- 1.34 -0.55 0.05 
- 1.42 -0.79 0.11 
- 1.67 -0.96 -0.06 
- 1.80 - 1.20 -0.18 
- 1.88 - 1.21 -0.34 
-2.35 -2.01 - 1.54 

(d) Model 2, t$(2), Choosing Tb minimizing ti 

T = 70 k(F-sig) -6.22 -5.81 -5.52 -5.22 
k(t-sig) -6.32 -5.90 -5.59 -5.29 

T = 100 k(F-sig) -6.07 -5.72 -5.48 -5.17 
k(t-sig) -6.21 -5.86 -5.55 -5.25 

T=co - 5.57 -5.30 -5.08 -4.82 

-4.21 
- 4,24 
-4,17 
-4.22 
- 3,98 

- 3.28 
- 3.32 
-3.29 
- 3.35 
- 3.25 

-3.00 
- 3.08 
- 3.05 
-3.13 
- 3.06 

- 2.76 
-2.85 
-2.83 
-2.85 
-2.91 

-2.54 
- 2.67 
- 2.58 
-2.63 
- 2.72 

(e) Model 2, t:,(2), Choosing Tb minimizilzg tf 

T = 70 k(F-sig) - 5.77 -5 3;! -4.95 -4.51 
k(t-sig) -5.77 e~e5.38 -4.98 -4.55 

T = 100 k(F-sig) -5.50 -5.16 -4.85 -4.47 
k(t-sig) -5.36 -5.23 -4.91 -4.47 

T=oo - 5.28 -4.95 -4.62 -4.28 

(f) Model 2, &,(2), C’hoosirog Tb mwimizing It,:1 

T = 70 k(F-sig) -6.01 -5.56 -5.25 -4.88 
k{t-si$) -6.07 -5.61 -5.33 -4.94 

- 2.92 
-3.04 
-2.91 
-2.99 
- 2.94 

- 1.37 
- 1.53 
- 1.50 
- 1.55 
- 1.64 

- 0.93 -0.54 
- 1.10 -0.71 
-1.11 -0.73 
-1.19 -0.78 
- 1.33 - 0.98 

- 0.02 
-0.27 
-0.30 
-0.38 
-0.59 

-3.64 -2.17 
- 3.72 -2.28 

- 1.82 - 1.37 -0.76 
- 1.89. - 1.50 -0.85 
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Table 1 (continued) 

1.0% 2.5% 5.0% lQ.O% 50.0% 90.0% 95.0% 97.5% 99.0% 

T = 100 k(F-sig) -5.72 - 5.37 - 5.14 -4.84 
k(t-sig) -5.86 -5.49 -5.19 -4.88 

T=co - 5.57 -5.20 -4,91 -4.59 

(g) Molded 3, t,*(3), Ckoosing Tb mfnimizing ti 

T = 100 k(F-sig) -5.41 -4.99 -4.74 -4.44 - 3.36 
k(t-sig) -5.45 -5.11 -4.83 -4.48 -3.44 

T = 15Q k(F-sig) -5.19 -4.85 -4.59 -4.31 - 3.32 
k(t-sigJ -5.28 -4.96 -4.65 -4.38 -3.33 

T = 200 k(F-sig) -5.19 -4.84 -4.59 -4.30 - 3.30 
k(t-sig) -5.28 -4.96 -4.65 -4.38 - 3.32 

T=oo -4.91 - 4.62 -4.36 - 4.07 -3.13 

T = ld”;; k(F-sig) - 5.02 -4.69 -4.40 -3.99 - 2.76 
k(t-sig) -5.26 -4.82 -4.44 -4.07 -2.83 

T = 150 k(F-sig) -4.89 -4.54 -4.27 -3.93 -2.74 
k(t-sig) -5.00 -4.63 -4.36 -3.99 -2.78 

T = 200 k(F+ig) -4.75 -4.43 -4.13 -3.79 -2.69 
k(t-sig) -4.77 -4.50 -4.22 -3.83 - 2.72 

T=m -4.67 -4.36 -4.08 -3.77 -2.65 

T = 100 k(F-sig) -5.29 -4.87 -4.57 -4.27 -3.15 
k(t-sig) -538 -5.Q2 -4.67 -4.36 - 3.24 

T = 150 k(F-sig) -5.15 -4.77 -4.49 -4.21 -3.15 
k(t-sig) -5.23 -4.91 -4.57 -4.28 -3.18 

T = 200 k(F-sig) -5.02 -4.75 -4.41 -4.10 - 3.07 
k(t-sig) -5.02 -4.75 -4.41 -4.17 -3.11 

T=CCI -4.87 -4.58 -4.34 -4.04 -3.08 

-3.54 
-3.60 
-3.47 

-2.11 - I.76 
- 2.23 - 1.87 
-2.15 - 8.86 

-2.53 -2.34 -2.21 
-2.60 -2.39 -2.22 
-2.47 - 2.29 -2.11 
-2.50 -2.30 -2.13 
-2.46 -2.26 -2.09 
- 2.48 -2.27 -2.10 
-2.32 -2.12 -1.96 

- 1.76 -1.46 - 1.12 - -0.79 
- 1.76 - 1.45 - I.12 -0.83 
-1.70 -1.33 -1.01 -0.64 
-1.72 -1.40 - 1.07 - Q.49 
-1.53 -1.23 -0.90 -0.59 
- 1.57 -1.24 -0.96 -Q.56 
- 1.57 -1.22 -MM - 0.49 

-2.19 -1.99 -1.69 -1.40 
- 2.28 -2.04 - 1.75 -1.46 
-2.16 -1.89 - 1.59 -1.19 
-2.19 - I.92 - 1.63 - 1.30 
-2.11 -1.86 - 1.63 - 1.29 
-2.15 - 1.92 - 1.68 - 1.26 
-2.14 - 2.87 - 1.61 - 1.30 

- 1.42 
- 1.49 
- 1.59 

- CL.89 
- 0.95 
-1.30 

4, Finite smqh criticsd vaks 

In this section we report simulation experiments :c evaluate the finite sampk 
distributions of the statistics under the null hypothesis of a unit root. We 
consider the leading case of a random walk where the data are generated by ( 
with y0 = 0 and e, - i.i.d. N&I, 1). This allows us to assess the effects of the data 
dependent methods to select the truncation lag. Given the nature of the data sets 
analyzed in later sections, we present critical values for the foll 
sizes. For Model I, T = 6Q80 and 100, for Mod&! 2, T = 70 and 
Model 3, T = 100, 150 and 200. The results were obtained using 
tions. The program was coded using the C language and N(0, I) random 
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deviates were obtained from thz routine RAN1 of Press et al. (1986). For purely 
computational reasons, k max is set to 5. The results are presented in Table 1. 

We first give some remarks on the finite sample distributions when k is fixed. 
The results are not reported but are available in the working paper version. In 
all cases, the critical values are fairly stable as k changes provided that k is held 
fixed when minimizing over Tb. In those cases where k is fixed, the asymptotic 
distribution is a good approximation to the finite sample distribution. Upon 
comparison with the results in Perron (1989), it is readily seen that the critical 
values are much lower when Tb is allowed to be data dependent than when it is 
considered fixed. For example, consider t:(l) with T = 100 and k = 0, the 5% 
critical value is - 4.93 when minimizing over Tb as opposed to - 3.76 when 
the date of the break is considered fixed at mid-sample. 

The critical values for the test constructed with k chosen according to 
recursive F-tests on the coefficients of the lagged first differences are presented in 
the rows labelled k (F-sig). For example, the 5% point with T = 100 is - 5.09. 
The critical values for the test constructed with k chosen according to a t-test on 
the last included lag in the autoregression are presented in the rows labelled 
k (t-sig). The resulting values are close to the values obtained using F-sig.’ In 
those cases where a data-dependent method is used to select k, the asymptotic 
approximation is not as good, indicating that the use of the asymptotic critical 
values would lead to tests that are liberal in finite samples. Comparing the 
distribution of the statistics t:(i) (i = 1, 2, 3), it is interesting to note that the 
highest critical values (in the left tail of the distribution) occur for Model 3. This 
is contrary to the fixed T,., case where the highest critical values correspond to 
Model 1. 

Consider now the critical values of the statistic tz$(l) and t&(i) (i = 2, 3) 
where Tb is chosen to minimize to or t+ the t-statistic on the change in intercept 
or slope. The corresponding critical values are now smaller in absolute value. 
This is due to the a priori imposition of a one-sided change in the intercept of the 
trend function. 

Consider now the statistics based upon choosing the break date maximizing 
the absolute value of tg or t+ t$o,(l) and tzlvl(i)(i = 2,3). These statistics like t:(i) 
do not impose any a priori condition on the sign of the change. We remark that 
for Models 1 and 3, the critical values in the left tail of the distribution are 
essentially the same between t:(l) and t&,(l) and between t,*(3) and t,*,,,(3). 
Hence for Models 1 and 3, these two statistics are likely to have similar 

’ The simulated critical values involving a test of significance on the lagged first differences of the 
data are fur tests of size 10%. We chose this value on the principle that it is safer to include extra lags 
to achieve the correct size in finite samples (at the expense of a loss in power). However, critical 
values with 5% tests were also computed and are not included since they are very similar to those 
with ths 10% tests. 



properties. Things are dikent for Model 2. The critical values in the left tail of 
the distribution are smaller (in absolute value) for t&,(2) compa to to*(2). 
Hence, one could expect the former to provide a more powerful test. 

We now discuss finite sample size and power simulations. The aim is to 
determine the following: how size and power are affected by the choice of k in t 
presence of more general error processes, and by diRerent values of the change in 
intercept and slope. Finally how power varies across procedures for choosing 
T,,. The focus of the simulations is placed on Models II and 3. The data 
generating process (DGP) used for Model 1 is of the form 

yt = 0DUt + SD(T,)t + a~+-1 + 5 +(i)dyt-i -I- (1 + $L)e,, (5) 
i=l 

where e, N i.i.d. N(0, 1) and y. = e. = 0. For Mode! 3, the DGP is of the form 

Yt = YDT,* -a; jt = C@t-1 + i #(i)Ajt-i + (1 + $L)et. (6) i= 1 

For the size simulations, Q = 1 and for power GI is set to 0.8, The sample size 
for all simulations is 7’ = 100 and 1 replications are used. Regressions were 
run for fixed k = O,I, . . . , 5 and for k(F-sig) and k(t-sig) with k max = 5. For 
fixed k, the 5% asymptotic critical values were used, and for k(F-sig) and k(r-sig), 
the appropriate 5% finite sample critical vaIues for T = 108 were used. When 
the change in intercept or slope is non zero, the break date is Tb = 50 (at 
mid-sample). For Model 1, we used values of 6 (under the null) and 6 (under the 
alternative) of 0,2,5 and 10. For Model 3, we used values of y at 0, 0.1,0.3,0.5 
and 1. Seven different error specifications were used: (1) #(i) = 0 (i = I, . . . ,4) 
and $ = 0; (2) t$(l) = 0.6, # (i) = 0 (i = 2, 3, 4) and # = 0; (3) #(l) = - 0.6, 
#(i) = 0 (i = 2, 3, 4) and $ = 0; (4) $(l) = 0.4Y 4(2) = 0.2 and 
#(3) = #(4) = + = 0; (5) #(l) = 0.3, 4(2) = 0.3, 4(3) = 0.24, b(4) = 0.14 and 
Ic, = 0; (6) 4(i) = 0 (i = 1, 2, 3, 4) and # = 0.5; (7) 4(i) = 0 (i = 1, 2, 3, 4) and 
#= - 0.4. Experiment (1) has i.i.d. errors. This specification is used to isolate 
the effects of choosing k too large. Experiment (2) has positive correlation in the 
errors and is quite common in empirical data. Experiment (3) has negative 
correlation in the errors. Experiments (4) and (5) have higher-order correlation 
and are useful in isolating the effects of picking k too small. Finally, experiments 
(6) and (7) h ave MA(l) errors. 

Due to space constraints, we only include, in Table 2, the full set of results for 
t,*(3) and some for t&(3) with t-sig (the fuil set of results is available on request). 
We begin by summarizing results pertaining to the choice of k. When k is chosen 
less than the true order of the process, substantial size distortions often occur. In 
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most cases the exact size is much greater than the nominal size. If k is chosen at 
least as big as the true order of the process, the exact size is rarely greater than 
the nominal size. IIowever, power is lost if the lag structure is over para- 
meterized. When the kft-sig) or k(P-sig) procedure is used to pick k, the exact 
size is close to the nominal size in all cases except when there is a negative MA 
component as in experiment (7). In this case the exact size is substantially 
inflated above the nominal size. Power using kfd-sig) or k(F-sig) is generally 
quite good. It is greater than when k is larger than the true order of the process 
and is nearly as high as when k is set to the true order in the case of 
autoregressive errors. Overall, the k(E-sig) and k(F-sig) procedures have good 
size and power properties and clearly dominate using a fixed k. The results 
indicate that tests based on the k(t-sig) procedure are slightly more powerful 
than those based on k(F-sig). 

Now consider how a change in intercept or slope afEects the exact size. The 
tests t,*(l) and &( 1) become oversized as 6 increases. For example, consider 
experiment (1) for tz( 1) with k(t-sig); when 6 = 0 the size of the test is 0.047, when 
S = 2 it is 0.053, when 6 = 5 it is 0.096 and it rises to 0,486 when 6 is as big as 10. 
The results in Tables 2 for t:(3) concerning models with a change in slope y show 
that changes in y do not affect the size of the tests for the range of values 
considered. For r&(3), there are slight distortions in some cases as y increases. 
Additional simulations revealed that larger values of y induce substantial size 
distortions. The reader is referred to Vogelsang and Perron (1994) for a more 
detailed analysis on this issue. It is important to note here, though, that the 
magnitude of 6 and y where size distortions become a problem are of the order of 
5 to 10 times the standard deviation of the errors for 6 and at least 2 times the 
standard deviation of the errors for y. For most macroeconomic time series 
(including those analyzed in later sections) intercept shifts are less than 5 stan- 
dard deviations and slope changes are less than 0.7 standard deviations. There- 
fore, distortions caused by large changes are not a problem in practice but care 
should be used if a series is suspected to have a very large intercept or slope 
change. 

We conclude by noting the efFect on power of imposing the mild a priori 
condition on the sign of the change, i.e. comparing t;( 1 j versus t&(l) ;:nd t$(3) 
versus t&(3). It is seen that power is higher when this condition is imposed and 
there is indeed a non-zero change in the trend function. 

Table 3 presents the empirical results for the Nelson-Plosser (1982) series for 
which, in Perron (1989), Model 1 was the specification of interest. A rejection of 
the unit root was claimed for all these series except the Consumer Price Index, 
Velocity and Interest ate. Results are presented for both cases where the 



size (a! = 1.0) Power (0~ = 0.8) 

y=o po.1 y=o.3 y=o.5 y=l y=o y=O.l po.3 y=o.s y=l 

(1) $(i) = 0.0 (i = 1, . . . ,4), JI = 0.0 

0 0.049 0.053 0.055 0.047 0.036 0.358 0.345 0.344 0.331 0.325 
1 OSM 0.049 0.048 0.042 0.037 0.287 0.299 0.283 0.277 0.277 
2 0.045 0.046 0.048 0.041 0.040 0.203 0.215 0.207 0.199 0.205 
3 0.038 0.039 0.042 0.040 0.047 0.160 0.177 0.169 0.165 0.167 
4 0.035 0.037 0.039 0.036 0.041 0.122 0.129 0.134 0.130 0.134 
5 0.035 0.035 0.039 0.038 0.039 0.110 0,123 0.125 0.116 0.167 
F-sig 0.050 0.054 0.058 0.055 0.050 0.235 0.256 0.244 0.23 1 0.233 
t-sig 0.049 0.05 1 0.@58 0.05Q 0.045 0.257 0.278 0.270 0.259 0.258 
G?,(3) 0.05 1 0.064 0.093 0.092 0.094 0.292 0.419 0.417 0.413 0.398 

(2) 4(l) = 0.6, ti = 4(i) = 0.0 (i = 2, 3,4) 

0 
1 
2 
3 
4 
5 
F-sig 
t-sig 
t&(3) 

0.000 0.000 0.000 0.000 0.001 
0.058 0.060 0.056 0.054 0.062 
0.046 O.Q48 0.049 0.049 0.055 
0.045 0.046 0.040 0.041 0.045 
0.037 0.040 0.034 0.038 0.044 
0.033 0.033 0.034 0.037 0.045 
0.049 0.05 1 0.047 0,047 0.054 
0.049 0.047 0.038 0.046 0.049 
QO44 0.048 0.855 0.067 0.079 

0.000 0.000 o.ooo o.ooo 
0.908 0.903 0.904 0.902 
0.753 0.758 0.761 0.753 
0.586 0.592 0.600 oi594 
0.405 0.426 0.424 0,417 
0.289 0.302 0.306 0.305 
0.676 0.679 0,679 0.688 
Cl.760 0.773 0.774 0.778 
0.78 1 0.828 0.840 0.841 

0. 
0.901 
0.756 
0.593 
0.417 
0.305 
0.493 
0.785 
0.835 

(3) #W = - 0.6, $ = #(i) = 0.0 (i = 2, 3,4) 

0 0.858 0.874 0.873 0.858 0.848 
1 0.05 t 0.048 0,043 0,038 0.034 
2 0.046 0.040 0.040 0.037 0.034 
3 0.044 0.045 0.041 0.037 0.039 
4 0.034 0.030 0.033 0.032 0.033 
5 0.033 0.035 0.038 0.037 0.039 
F-Sig 0.037 0.040 0.044 0.042 0.044 
t-sig 0.039 0.039 0.042 0.034 0.037 
t&(3) 0.046 8.062 0.082 0.076 0.073 

0.997 0.997 0.998 
0.131 0.132 0.117 
0.090 0.100 0.096 
0.084 0.098 0.094 
0.063 0.074 OS@2 
0.056 0.073 0.073 
0.091 0.104 0.104 
0.090 0.105 0.105 
0.113 0.192 0.180 

0.998 
0.114 
0. 
0.099 
0.083 
0.075 
0.104 
0.104 
0.178 

0.998 
0.113 
0.098 
0. 
0.077 
0.070 
0.100 
0.097 
Q.167 

(4) 4(l) = 0.4, $(2) = 0.2, $ = #J(3) = #(4) = 0.0 

0 0.004 0.004 0.005 0.004 0.004 0.001 0.000 0.000 0.000 O.OOQ 
1 0.009 0.008 0.008 0.007 0.006 0.432 0.439 0.428 0.42 1 0.424 
2 0.048 0.051 0.050 0.049 OSM8 0.756 0.764 0.765 0.763 0.760 
3 0.040 0.042 0.047 0.044 0.05 1 0.598 0.61 I 0.611 0.607 0.602 
4 0.038 0.039 0.043 0.044 0.046 0.413 0.432 0.438 0.436 0.42 1 
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Table 2 (Continue@ 
(DGI? yt = yDT: + j#;; j$ = aj$- 1 + cfzl #(i)dj,-i + (1 + @L) e,, et m i.i.d. N(0, 1); T = 100, 
Tb = 50; 2000 replications; 5% nominal size; k max = 5) 

k Size (or = 1.0) Power (LY = 0.8) 

y=o y=O.l y=o.3 y-o.5 y=l y=o y=O.l y=o.3 y=os y=l 

5 0.042 0.043 0.040 0.040 0.050 0.300 0.314 0.318 0.311 0.313 
F-sig 0.040 0.048 0.049 0.047 0.056) 0.582 0.593 0.600 0.591 0.593 
t-sig 0.038 0.040 0.038 0.040 0.044 0.607 0.625 0.626 0.624 0.620 
t&(3) 0.037 0.043 0.049 0.056 0.069 0.659 0.733 0.755 0.737 0.737 

(5) 4(l) = 0.3, $(2) = 0.3, qq3) = 0.25, &I) = 0.14, @ = 0.0 

0 0.108 0.107 0.106 0.105 0.100 
1 0.001 0.001 0.001 0.001 0.000 
2 0:002 0*002 0.001 1 0.001 0.000 
3 0.033 0.033 0.03 1 0.03 1 0.034 
4 0.07 1 0.073 0.078 9.077 0.080 
5 0.05 1 0.05 1 0.054 0.05 1 0.051 
F-sig 0.048 0.046 0.050 0.048 0.051 
t-sig 0.0313 m37 0.039 0.037 0.037 
G?(3) 0.022 0.020 0.025 0.025 0.025 

0.000 0.000 0.000 0.000 0.000 
0.033 0.036 0.033 0.033 0.034 
0.566 0.568 0.569 0.571 0.578 
0.877 0.881 0.878 0.876 0.873 
0.904 0.898 0.900 0.897 0.899 
0.762 0.774 0.771 0.770 0.769 
0.857 0.863 0.858 0.858 0.856 
0.855 0.859 0.864 0.860 0.859 
0.864 0.893 0.882 0.893 0.894 

(6) # = 0.5, 4,(i) = 0.0 (i = 1 , -*- ,4) 

0 0.002 0.003 0.003 o.uO3 0.001 0.008 0.010 0.007 0.007 0.005 
1 0.150 0.142 0.160 0.160 0.156 0.548 0.552 0.566 0.545 0.542 
2 0.021 0.02 1 0.028 0.028 0.020 0.096 0.100 0.110 0.103 0.103 
3 0.052 0.050 0.057 0.06 1 0.059 0.190 0.202 0.215 0.203 0.202 
4 0.034 0.035 0.033 0.033 0.034 0.101 0.105 0.117 0.111 0.113 
5 0.038 0.037 0.039 0.035 0.041 0.102 0.111 0.128 0.119 0.117 
F-sig 0.053 0.05 5 0.062 0.065 0.06 1 0.206 0.213 0.222 0.210 0.209 
t-sig 0.067 0.066 0.070 0.069 0.064 0.244 0.258 0.271 0.257 0.262 
tX y(3) 0.056 0.067 0.092 0.104 0.111 0.254 0.339 0.373 0.365 0.364 

(7) $ = - 0.4, #(i) = 0,O (i = 1, . . . ,4) 

0 0.734 0.738 0.739 0.717 0.69 1 0.996 0.996 0.996 0.995 0.995 
1 0.202 0.210 0.206 0.189 0.174 0.75 1 0.763 0.727 0.720 0.715 
2 0.079 0.087 0.075 0.074 0.074 0.395 0.406 0.383 0.385 0.376 
3 0.044 0.048 0.050 0.046 0.046 0.252 0.263 0.254 0.251 0.245 
4 0.036 0.037 0.034 0.033 0.036 0.159 0.173 0.163 0.164 0.156 
5 0.03 1 0.03 1 0.033 0.032 0.035 0.131 0.144 0.139 0.138 0.135 
F-sig 0.145 0.148 0.156 0.148 0.149 0.456 0.476 0.452 0.45 f 0.442 
t-S& 0.235 0.247 0.257 0,251 0.248 0.63 1 0.658 0.646 0.643 0.647 
t&I31 0.174 0.236 0.287 0.272 0.273 0.587 0.690 0.673 0.665 0.659 

Note: All entries refer to the statistic t,*(3) except those in the rows Welled t&(3) which corresporrd 
to this statistic constructed using the t-sig procedure. 
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truncation lag is selected using the F-sig or t-sig methods and for both ways of 
selecting the break point. Here, k max is specified to be 10.’ The statistics of 
most interest are the estimates of CI and their t-statistic as well as six p-values in 
the last columns (reported to the nearest 1%). The first set corresponds to tz( 1) 
and the second to l&(l). The first p-value in each set is based on the asymptotic 
distribution. It is included because it may be more robust, for example, to the 
presence of additional correlation than those based on finite sample distribu- 
tions. The second and third p-values correspond to the F-sig and t-sig methods, 
respectively. The critical values used correspond to samples of size 60,80 or 100 
whichever is closest to the actual sample size. 

The empirical results show that the unit root hypothesis can be rejected at the 
5% significance level or better, under either scenario about the choice of k, for 
Real GNP, Nominal GNP,3 Industriai Production and Nominal Wages. For 
the Employment series, the finite sample p-value is 0.05 with F-sig and 0.09 with 
t-sig (the corresponding asymptotic p-values are 0.02 and 0.04, respectively). 
Hence, the unit root is also rejected for the Employment series. The Real per 
capita GNP and Money Stock series present a more ambiguous case. When It is 
chosen with the F-sig procedure, the p-value for the Real per capita GNP series 
is 0.12 using the finite sample distribution and 0.06 using the asymptotic 
distribution. The corresponding figures are 0.14 and 0.08 for the Money Stock 
series. These values are marginal for a rejection at the 10% Ievel.4 

The unit-root hypothesis cannot be rejected for the Consumer Price Index 
(CPI), Velocity and Interest Rate series under any procedure. The choices of 
Tb and k obtained using the data-dependent methods for choosing k are 
different but yield the same qualitative results. The only series offering a mark- 
edly different picture from the fixed Tb case is the GNP Deflator. With k chosen 
according to either method the p-value is 0.35 (0.29 using the asymptotic 
distribution). Hence, for this series, the rejection of the unit root reported in 
Perron (1989) is not robust to correlation between the choice of Tb and the data. 

ZThe choice of k max is somewhat arbitrary. On the one hand, one would like a large value to 
have as unrestricted a procedure as possible. On the other hand, a large value of k max yields 
problems of multicollinearity in the data and also a substantial loss of power. The choice of k max 
was also set such hat the estimated autoregressions did not show any sign of remaining correlation 
in the residuals as indicated by the Box-Pierce statistic. Most of the results are robust to alternative 
choices for k max. 

3 For the Nominal GNP series, k max was found binding in the sense that k = 10 was selected. 
Hence k max was increased to 15 which again was found to be binding. We did not increase k max 
further given the relatively few number of observations. Nevertheless, the conclusion is robust to 
basically any value of the truncation lag parameter k chosen. 

41t is of interest to note, that applying the tests to the Friedman and Schwartz (1982) Real per 
Capita GNP (using the sample 190!&1970) allows an overwhelming rejection of the unit root under 
either method. See the working paper version for more details. 



A comment is warranted about the choice of Tb selected according to these 
procedures. Except for the CPI, Velocity and Interest Rate series (for which the 
unit root is not rejected), the value Tb is either 1929 (for Nominal Wage and 
Money Stock) or 1928 (for the other series). While 1928 does not exactly 
correspond to the date specified in Perron (1989), the economic interpretation 
remains the same. The selection of 1928 is due to the presence of the dummy 
variable D(T+,), in regression (1). Hence, 1928 is often chosen because the 
dummy variable takes value 1 in 1929 and offers some additional fit to the 1929 
crash over what the change in the intercept can do alone. 

Now consider the results when Tb is chosen to minimize te, the t-statistic on 
the change in intercept, i.e. imposing the one-sided restriction of a crash. When 
a rejection of the unit-root hypothesis occurred using t,*(l), it does so again here 
and more strongly, given that the tests have higher power. As was the case 
earlier, the unit root cannot be rejected for the GNP Deflator series. The results 
offer, however, a different picture for three series. First, for the Employment 
series, the unit root can be rejected at the 5% level (using any procedure) instead 
of 10% with the statistic t,*(l). More interestingly, the unit root can now be 
rejected at the 10% level for the Real per capita GNP and oney Stock series. 
For example, the p-values under the F-sig procedure are 0.06 and 0.07, respec- 
tively. 

We now turn to the analysis of the Common Stock Price and Real Wage 
series where Model 2 is specified, i.e. allowing both a change in the intercept and 
the slope of the trend function. The procedures used and the presentation of the 
estimation results in Table 4 follow our previous analysis except that k max is 
now 5. Consider first the case where Tb is chosen to minimize the t-statistic on 01. 
The date of break selected for the Common Stock Price series is 1928 (consistent 
with the imposition of 1929 as the break date in Perron, 1989). Both methods to 
choose the truncation lag yield the same model and test statistic with an 
asymptotic p-value of 0.02 and finite sample p-value of 0.04 for F-sig and 0.06 for 
t-sig. Similar results hold for the Real Wage series. The break date is 1939; the 
asymptotic p-value of the test is 0.03 and the finite sample ones are 0.07 with 
F-sig and 0.08 with t-sig. 

Consider now results obtained when Tb is chosen maximizing tp or I@, the 
t-statistic on the coefficient of the slope change. The results are quite interesticg 
in that the unit root is strongly rejected using either method to select the 
truncation lag even without the a priori imposition on the sign of the change in 
slope. The selected break date is still 1939 for the Real Wage series but now 1936 
for Common Stock Price. 

To compare our results with those of Zivot and Andrews (1992), note first the 
methodological differences involved. First, we retained the one time dummy 
II(&), in regressions (1) and (2); we consider the F-sig procedure to select the 
truncation lag as well as the t-sig procedure; we consider k max = 5 instead of 10 
for the Real Wages and Common Stock Price series; and we also consider the 
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case where the break date is selected using a test of sipificance on the c~~~e~t 
of the change in slope. For the series Real GNP, Nominal GNP, ~nd~st~~l 
Production, Nominal Wages and Common Stock Prices our results agree 
those of Zivot and Andrews (19821, namely a rejection of the unit root. Our 
results also show these rejections to be robust to alternative speci 
choosing the break date and the truncation lag (except for Nominal 
t,“(l) and F-sig). For the Employment series, our results allow a rejection at t 
10% level using the finite sample critical values for the t-sig method when the 
break is selected minimizing the unit-root statistic (basically due to the inclusion 
of the one-time dummy D( T& in (I)). However, our results show that a stronger 
rejection, at the 5% level, is possible using the F-sig method and that this 
rejection becomes even stronger if the mild a priori restriction of a one-sided 
change is imposed. For the Real per capita GNP and Money Stock series, the 
results with t:(l) and the t-sig method are similar to those in Zivot and Andrews 
(1992), namely p-values of 0.21 and 0.28. Using the F-sig procedure, the pvalues 
are substantially reduced to 0.12 and 0.14, respectively. Imposing the sign of the 
change a priori allows a rejection at the 10% level for both series using F-sig and 
for Xeal per capita GNP using t-sig. The difference for the Real Wage series is 
due to the different choice of k max. Our results agree for non-rejections for 
GNP Deflator, CPI, Velocity and Interest Rate. 

7. Results with an international data set for pstwas real GNP 

This Section analyzes an international data set of post-war quarterly real 
GNP or GDP series. The countries analyzed and the type and sampling period 
of the series are the following: USA (GNP, 1947: l-1991 :3); Canada (GDP; 
1947 : l-1989 : 1); Japan (GNP; 1957 : l-1988 : 4); France (GDP; 1965 : 
l-1988: 3); Germany (GNP; 1960: l-1986: 2); Italy (GDP; 1960: l-1985: 1); and 
the United Kingdom (GDP; 1957: 1-1986: 3). The data far USA are from 
Citibase and for Canada from the Cansim data bank. For Japan and France 
they are from the IFS data tape. The remaining series (UK, Germany and Italy) 
are from Data Resources Inc. and are those used in Campbelll and Mankiw 
(1989). All &es are seasonally adjusted and at annual rates, except for the USA 
and the United Kingdom which are at quarterly rates. The plots of the logar- 
ithm of most series are presented in Fig. 1. In these graphs the dashed line is the 
estimated trend function allowing a one-time change in slope. The date of the 
change varies for each series and was selected using the test t:(3). 

The results pertaining to the statistic t,*(3) are presented in Table 5. Using the 
asymptotic critical values, the unit root is rejected, at close to the 5% level, for 
all series except Italy (for Canada this rejection is not robust when using F-sig). 
Using the finite sample critical values, the results are not, in general, as sharp. 
For Japan, the unit root is strongly rejected (p-values of 0.02 and 0.03). The 
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CANADA (194’7:1-1989:1;Tb= 1976:3) 

13.5. 

I 
f3. 

FRANCE (1965:1-1966:3;Tb=1974:2) 

I11 

-h-65 Xi70 1975 l&30 19'85 
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Fig. 1. Log real GNP for selected countries. 

results are not as clear for most of the other series but some interesting cases still 
emerge. For the United Kingdom, using the F-sig and t-sig procedures, the 
p-values are 0.07 and 0.08 respectively, allowing a rejection of the unit root at the 
10% level. The results for Canada, France, Germany and the United States are 
similar in terms of the t-statistics obtained. They range from - 4.22 to - 4.33 
with finite sample pvalues between 0.12 and 0.14 (this excludes the case of 
Canada with F-sig). While the unit root cannot be rejected at the 10% level, the 
results are not very much at odds with the hypothesis that the series can be 
construed as stationary fluctuations around a breaking trend function. Such is 
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not the case, however, with the GDP series from Italy. Here the p-values are 
large enough to cast little doubt on the unit root. 

It is interesting to look at the estimated change in the slope of the trend 
function and the dating of the break implied by the estimation procedure. The 
estimated percentage decrease in the rates of growth are: USA, 37%; Canada, 
36%; Japan, 58%; France, 66%; Germany, 56%; Italy, 57%; UK, 54%. These 
figures are indeed quite large and suggest, besides the uniteroot issue, that an 
important structural change has occurred. The break dates are different for each 
country but are all close to the year 1973, associated with the first oil price 
shock. They vary between 1971: 2 (USA) and 1976: 3 (Canada). It is to be noted, 
however, that the method used here is not directly geared at providing a consis- 
tent estimate of the date of change. Hence, the break dates should be viewed as 
approximate. 

As discussed, using t&(3), which select Tb based on the parameter of the 
change in slope, is likely to allow tests with greater power. p-v;:lues pertaining 
to this test are presented in the last columns of the table. Indeed, it appears more 
powerful. Using the t-sig procedure, the p-values for the null hypothesis of a 
unit root are at most 0.11 for all countries except Italy. Using the F-sig 
procedure, the p-values are smaller than 0.10 for USA, Japan, France and 
the United Kingdom; they are 0.13 and 0.14 for Canada and Germany, respec- 
tively. These results show that a simple imposition of a one-sided downward 
change in slope (still with an unknown break point) is enough to warrant 
rejection of the unit root hypothesis at close to the 10% level for all countries 
except Italy. 

We view these results, especially given the small span of the data, as sub- 
stantial evidence against the unit root. It is indeed somewhat revealing 
to consistently obtain such p-values given the relatively low power of unit- 
root tests using data over a short span (see Perron, 1991). Given that the 
statistical procedure used is one where an extreme assumption is made about the 
correlation of the choice of the break point and the data (yielding a procedure 
with low power compared to the case where Tb is assumed fixed), we view these 
results as consistent with the hypothesis that the series are best characterized as 
stationary fluctuations around a breaking trend function with a change in slope 
near 1973. 

To compare our results with those of Banerjee et al. (1992) (BLS), we first note 
the main differences in the studies. First, the data used are slightly different in 
terms of both the sources and the horizon, Second, they use the one-step 
innovational outlier method which does not allow for a change in slope under 
the null hypothesis. Third, they use a fixed value of the truncation lag set at 4 for 
all countries and they note that the results are robust when setting this fixed 
value to 8 or when using an information criterion (AIC or Schwartz) to select the 
order. Using these different specifications they found little evidence against the 
unit root for all countries except Japan. 



After several investigations using both types of methods a 
set,5 it turns out that the major factor responsible for the conflicting results 
method to choose the truncation lag. For example, our data- 
select k = 4 only for Japan for which we both reject the unit root. For 
countries the implied value of the selected truncation lag is difkrent (i 
do our methods select k = 8 either). We believe our methods to select the 
truncation lag to be better for the purpose of the unit-root te 
reasons documented in Ng and Perron (1994). First, fixing 
value can involve serious size distortions and/or power losses 
correlation structure of the data is not only unknown but is likely to 
across countries. However, even for data-dependent methods t 
asymptotically valid unit-root tests, there are important differences between 
methods based on a general to specific approach and methods based on 
information criteria. In the context of a model where the noise component is an 
ARMA process, Ng and Perron (1995) show that the latter implies a sequence of 
selected values for k that increases with the sample size at a logarithmic; rate, 
a very slow rate, The finite sample implication of this result is that methods 
based on information criteria will tend to select very low autoregressive orders. 
These imphed parsimonious autoregressions will often not be enough to capture 
important serial correlation in the data and can lead to tests with size distortions 
and/or power losses. These theoretical issues are consistent with the empi 
results of BLS, who report values of k at 0 or 1 for all countries when usin 
information criterion. In no cases do our methods select such low values (except 
for Italy where we both agree for a non-rejection). 

8. Concluding comments 

This paper documents the robustness of the results presented in Person (1989). 
Unlike this previous study, we analyzed the case where the break date is 
explicitly correlated with the data and provided critical values to carry inference 
under a variety of procedures. This work is not intended as a substitute for the 
statistical procedures presented in that earlier paper but rather as a complement. 
Indeed, a case can often be made for using critical values that are based on the 
assumption of no correlation between the choice of the break point and the data. 
On the one hand, it may represent a close approximation to the actual extent of 
the correlation. On the other hand, each investigator may dif6er as to the 
amount of a priori information he or she is willing to incorporate into the 
analysis. 

s My thanks to Ro bin Lumsdaine for correspmdance on this issue. 



378 P. Pen-on /Journal of Econometrics 80 (1997) 355-385 

Another issue concerns the power of the tests. There appears to be a clear 
trade-off between power and the amount of a priori information one is willing to 
incorporate with respect to the choice of the break point. The presumption is 
clearly that a procedure imposing no such a priori information, as the ones 
presented in this paper, has relatively low power. In this respect, the rejection of 
the unit-root hypothesis, even when assuming a perfect correlation between the 
choice of the break point and the data, is quite strong. 

To simplify cross-references, we adopt the notation of Zivot and Andrews 
(1992), henceforth referred to as 2 - A. Let S, = &I ej (So = 0) and 
XT(r) = 6-l T-1’2StrrI, (j - 1)/T s$ r <j/T (for j = 1, . . . , T), where a2 = 
limT, Q) T-%(S$+ and C-3 denotes the integer part of the argument. Since {et} is 
i.i.d. with finite variance, we have X,(r) * W(r), where + denotes weak 
convergence in distribution (from the space D[O, 13 to the space C[O, 11 using 
the uniform metric on the space of functions on [O, f J) with W(r) a standard 
Wiener process on [0, 13. Also, a$ = T - ‘XT ef y,02 where -Q denotes conver- 
gence in probability. Omitting the one-time dummy variable D(7Q (since it is 
asymptotically negligible), we consider the following regressions: 

. 
Yt = B’@)&(I) + (my,- 1 -I- fA, (t = 1, . . . , T), IA-0 

for models i = I, 2. The vector &(jl) encompasses the deterministic components 
of the model and depends explicitly on 4, the break fraction, and T, the sample 
size. For example, z&(n)’ = (1, l, IN,(I)). Let Z’,(& r) = B~z;~,], ,(A) be a res- 
caled version with 6’ T a diagonal matrix of weights. For example, 
6; = diagjl, T-l, 1). We also define the limiting functions z’(I, r) = 
(I, r, du(& r))’ where du(il, r) = I(r > A), and Z2(R, r) = (1, r, du(il, r), dt*(A, r)) 
where dt*(R, r) = l(r > A)()(r - A). Note that, as argued in 2 - A, we do not have 
Z#, r) * Z’(il, r) (i = 1,2) as T + 00, using the uniform metric on the space of 
functions on D[O, 1 J. The proof nevertheless remains valid without the need to 
introduce another metric to guarantee such convergence results, For simplicity, 
we henceforth drop the superscript denoting the model. Note that the following 
proof is valid, with trivial modifications, for a large class of deterministic 
components including higher-order polynomials, multiple structural changes 
and other types of discrete shifts. 

It is convenient to first transform (A.l) as follows. Let 
~.M) = E&,T(Q ?? ?? ?? 3 RQ+I)] be the linear map projecting onto the space 
spanned by the colwmns of z&)’ = (z&), . . . ,z~&)). By definition 
Pz&) = zT(;Z)(z,(~~zT(A-z~~~~ where ( ??)- denotes a g-inverse. Premultiply- 
ing by Mz&) = (I - pz&)), (A.1) can be written, in matrix notation, as 

Mz&J Y = or(@kfz& P- p -t Mz&Je, (a.21 



where Y’ = (y1, . . . . y,),YII =(yo, . . . . yT_&mde’=(el, . . . . e&T 
tic of interest can be written as 

idaE~o,l,t&) = inf,,co.ll~T-2Y~l~zT(I1)Y-l~-1~2ETf1Y’-l~~~t~~e~/~~t~~, 

where s+(A) = T - l(r - &(a) y_ l)'bf~T(a)(Y - d;(a) Y- l) with a(n) the 0kS mi- 
mate of do in (A.2). We have 

T-2Y'_lM~T(d)Y_l = T-2 2 
t=l 

(oJ1) denotes a random variable that converges in probability to 0 unifomdy 
in 1) and: 

PzT(jl)xT(r) = Z&J) 
11 
~Z&s)Z&i,s)'ds 1 -jzT(rb)x&)ds. 
0 0 

Also, using developments as in 2 - A, 

T-l Y!_ &fz,(A)e = T - l? 
{ 
yg-1 - z&Y 

1 
i Z,,T(A)ZsJ-(AY 

I 
- 

t-1 s=I 

x i zs,TI;l)Ys-a 
s=l > 

et + o,aw 

1 
= d % XT(r) d X,(p) - e2 d &Z@)&(P) dX&) Q o&l). 

(A.9 



We can, therefore, express the t-statistic as a composite functional: 

where 

with h*(@ = inf aEco.lIn;:(;l) for any real function m = m(*) on [O, 11; and for any 
real functions kq( .), m2( ??), Q( .) on [0, 11, &2&I), m&I), p11&)] = 
ml (4 - “%~$?$m~\ij. The functionals HI and If2 are defined by (A.3) and (A.+. 
The weak convergence results for each of the elements are contained in the 
following lemma. 

Lemma A. 1. The following convergence results hold jointly: 
(a) X,(r) = ~0% 

(c) Bz,(a)x,(r) =d’z(A) W’(P) EZ(A, P)’ ; Z(A, s)Z(A, s)’ ds -i Z(1, s) W(s) ds; 
0 1 0 

(e) s+(A) = ~3 + opA(l). 

Parts (a) and (b) are standard results, and part (e) follows using (c) and (d) and 
the fact that T - ‘CT a$ -)p t.?. To prove part (c), we start with the following 
Lemma which foHows from Theorem 5.5 of Billingsley (1968). 

Lenma A.2 Pz&)X7+-) * Bz(A) W(r) if X,(P) =$ W(r) and for any sequence. of 

fmctions {UT(s)} (0 < s < 1) approaching u(s), we have: 



FVe prove (AS) in two steps. First, let 

P~(~~(~)) = ~(2, rr 
C 

i z(n, s)z(n, qds 1 -i z(a, s)u~(s~ ds. 
0 0 

By the properties of projections in Hilbert spaces (e.g., Brockwell and Davis, 
1991, p. 52): 

Pz(ur(s)) + Pz(u(s)) if I+(S) -b V(S). 

Now let 

(A-6) 

kT(z@)) = z,(& r)’ 
[ 

j. &(A, s)Z,(A, s)‘ds 1 -; Z&, s)u(s) ds. 
0 0 

We need the following Lemma stated in Parthasarathy (1977, proposition 
41.19). 

Lemma A.3. Let Sl c S2 c --- be an kcreasin~ sequence of subspaces in a Hi& 
bert space 2 and let S, = ui Si. Thelz limr,, B(&)(x) = P)(S&) for aBI X, 
where P&)(x) is the projection of x on the stsbsptice ST. 

Lemma A.3 applied to our problem implies that 

&G)(Hs)) + Pz(N+)), (A-7) 

since we can take ~6@ = D[:O, l] in which case ZT(A, r) E D[O, I] and 
Z(d, r))EC[O, I] c D[O, l]. 

Next, we use the result that if for some sequence of random variables {Xr 
and { YT) we have XT =3X and IlXr - Yr 114 0 (under sume P-measure), the 
YT =B X (under the same P-measure) (e.g., Billingsley, 1968, Theorem 4.11; Par- 
thasarathy, 1977, Corollary 51.3). Let X = Pz(v(s)), 
Y T = Pz&+)). Given (A.7), we only need 
IIPz&(s)) - P)zT(uT(s))Il 3 0. This follows easily since 

II&-(w) - ~~d~TWl12 = ll~M44 - ~Tw~l12 
= llU(S) - v&)l12 

XT = PzT(u(s)) and 
t0 show that 
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This completes the proof of part (c). To prove part (d), note that we have 

0 

= d &-(.A, r)‘dX&r) j &(A, s)Z& s)’ ds]-) Z& s)X,(s) ds. 
0 0 

FOH concretenm consider model 2 where &-(A, s) = (ZI,&), Z2,&, s))’ with 
Z1,&) - (1, CW/T)‘, Z2,,(4 s) = (~~CW/~ > 4, UCWT ’ 4uw~ - 4) 
and Z(iz, s) = (2, (s), &(s, A)) with Z1 (s) = (1, s)‘, &(A, S) z~ (d@, s), dt*(A, s))‘. 
Also define 2$(s) = (1, [Ts]/T - A)’ and Z:(s) = (1, (s - A))‘. Using arguments 
as in Gregory and Hansen (1996), 

1 jZ;(s)Z,(s)‘ds jZ$(s)Z;(s)‘ds 
1 A J 

j.z,(s)z,(A, s)‘ds 
0 = j Z(A, s)Z(A, s)’ ds . 

ds 1 j Z2(jl, s)Z,(d, s)‘ds ’ 
0 

Note that the result does not require that &(A, s) =+ Z(A, s) under the uniform 
metric. Similarly, we have 

2 Z&l, s)X&) ds 3 j Z(R, s)X(s) ds. 
0 
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l?idly, 

j Z,(;2, ry dX,(r) = T - II2 i ZT(R, t/T)e, 
0 1 

= j. l%(A) W(r)dW(r). 
0 

This completes the proof of part (d). 
To complete the proof of the main result, we need to show continuity of the 

various functionals. Continuity of h* and h is proved in 2 - A. 

Lemma A.2. Thefunctions HI and H2 deJined by (14.3) and (A.+ are combmars at 
(W(r), Pz(h)W(r)) and (J; W(r)dW(r), s; k(A) W(r)dW@)) with W-probability 
one. 

Proof: Since HI and H2 are continuous functions of their respective elements, 
the proof follows if each of the elements is bounded over [O, 11 with FV- 
probability one. kV( 0) is bounded with W-probability one and so is 
j; W(r)dkV(r) as discussed in 2 - A. Using arguments similar to those in 2 - A, 
1: I%(L) W(r) dPV(r) will be continuous if Pz(lz) W(r) is continuous, i.e. if 
supJE ro, lI 1 Pz(;i) W(r) 1 < a2 We note that Pz( .) is a linear operator that maps an 
element on C [Q, l] (the Wiener process W(r) which is continuous) to a subspace 
defined by the functions Z(n, r). Continuity of &(A) IV(p) follows since a linear 
projection map is bounded and continuous (see, e.g., Ash, 1972, p 130 and 
p. 148). r] 

It is useful to 3lustrate this rest& by an example. Consider Model 1 where 
Z(J, r) = (1, r, du(R, r)). Note that 

[ 

1 
i Z(& s)Z(L, s)’ ds = 

l/2 
l/2 l/3 

0 
(1 - ;I) (1 - A2)/2 (1 - I) 

If il = 0, j; Z(Q, s)Z(O, s)‘ds = A and if iz = 1, jkZ(l, s)Z(l, s)‘ds = I?, where 

A=[ i/2 ii !/2] and B=[ i/2 ” 3. 
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A and B are obviously singular, but a common g-inverse is given by 

+ -“: -r 3. 

Since the choice of g-inverse leaves a projection map unchanged, we have for 
a=o, 1: 

Pz(i) W(r) = Z'(r)' ; z’-(s)ZL(s)’ ds 1 -11 

0 
~Z%PWW, 

where Z’(r) = (I, I-), in which case the limiting distribution of t&I) (A = 0, 1) 
reduces to that in the case where no dummy for structural change is included. 
The proof for Model 3 follows similar arguments and is therefore omitted. It 
uses the limiting distribution for fixed A derived in Perron and Vogelsang 
(1993a, b) l(see also Vogelsang, 1993). 
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